Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SDP-quality bounds via convex quadratic relaxations for global optimization of mixed-integer quadratic programs (2106.13721v1)

Published 25 Jun 2021 in math.OC

Abstract: We consider the global optimization of nonconvex mixed-integer quadratic programs with linear equality constraints. In particular, we present a new class of convex quadratic relaxations which are derived via quadratic cuts. To construct these quadratic cuts, we solve a separation problem involving a linear matrix inequality with a special structure that allows the use of specialized solution algorithms. Our quadratic cuts are nonconvex, but define a convex feasible set when intersected with the equality constraints. We show that our relaxations are an outer-approximation of a semi-infinite convex program which under certain conditions is equivalent to a well-known semidefinite program relaxation. The new relaxations are implemented in the global optimization solver BARON, and tested by conducting numerical experiments on a large collection of problems. Results demonstrate that, for our test problems, these relaxations lead to a significant improvement in the performance of BARON.

Summary

We haven't generated a summary for this paper yet.