Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convex mixed-integer optimization with Frank-Wolfe methods (2208.11010v6)

Published 23 Aug 2022 in math.OC, cs.DM, cs.LG, and stat.CO

Abstract: Mixed-integer nonlinear optimization encompasses a broad class of problems that present both theoretical and computational challenges. We propose a new type of method to solve these problems based on a branch-and-bound algorithm with convex node relaxations. These relaxations are solved with a Frank-Wolfe algorithm over the convex hull of mixed-integer feasible points instead of the continuous relaxation via calls to a mixed-integer linear solver as the linear minimization oracle. The proposed method computes feasible solutions while working on a single representation of the polyhedral constraints, leveraging the full extent of mixed-integer linear solvers without an outer approximation scheme and can exploit inexact solutions of node subproblems.

Citations (4)

Summary

We haven't generated a summary for this paper yet.