Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Dense-Depth Representation for VLAD descriptors in Content-Based Image Retrieval (1808.05022v1)

Published 15 Aug 2018 in cs.CV

Abstract: The recent advances brought by deep learning allowed to improve the performance in image retrieval tasks. Through the many convolutional layers, available in a Convolutional Neural Network (CNN), it is possible to obtain a hierarchy of features from the evaluated image. At every step, the patches extracted are smaller than the previous levels and more representative. Following this idea, this paper introduces a new detector applied on the feature maps extracted from pre-trained CNN. Specifically, this approach lets to increase the number of features in order to increase the performance of the aggregation algorithms like the most famous and used VLAD embedding. The proposed approach is tested on different public datasets: Holidays, Oxford5k, Paris6k and UKB.

Citations (6)

Summary

We haven't generated a summary for this paper yet.