Papers
Topics
Authors
Recent
Search
2000 character limit reached

Code-Mixed Sentiment Analysis Using Machine Learning and Neural Network Approaches

Published 9 Aug 2018 in cs.CL | (1808.03299v1)

Abstract: Sentiment Analysis for Indian Languages (SAIL)-Code Mixed tools contest aimed at identifying the sentence level sentiment polarity of the code-mixed dataset of Indian languages pairs (Hi-En, Ben-Hi-En). Hi-En dataset is henceforth referred to as HI-EN and Ben-Hi-En dataset as BN-EN respectively. For this, we submitted four models for sentiment analysis of code-mixed HI-EN and BN-EN datasets. The first model was an ensemble voting classifier consisting of three classifiers - linear SVM, logistic regression and random forests while the second one was a linear SVM. Both the models used TF-IDF feature vectors of character n-grams where n ranged from 2 to 6. We used scikit-learn (sklearn) machine learning library for implementing both the approaches. Run1 was obtained from the voting classifier and Run2 used the linear SVM model for producing the results. Out of the four submitted outputs Run2 outperformed Run1 in both the datasets. We finished first in the contest for both HI-EN with an F-score of 0.569 and BN-EN with an F-score of 0.526.

Citations (25)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.