Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Relaxing and Restraining Queries for OBDA (1808.02850v1)

Published 8 Aug 2018 in cs.LO, cs.AI, and cs.DB

Abstract: In ontology-based data access (OBDA), ontologies have been successfully employed for querying possibly unstructured and incomplete data. In this paper, we advocate using ontologies not only to formulate queries and compute their answers, but also for modifying queries by relaxing or restraining them, so that they can retrieve either more or less answers over a given dataset. Towards this goal, we first illustrate that some domain knowledge that could be naturally leveraged in OBDA can be expressed using complex role inclusions (CRI). Queries over ontologies with CRI are not first-order (FO) rewritable in general. We propose an extension of DL-Lite with CRI, and show that conjunctive queries over ontologies in this extension are FO rewritable. Our main contribution is a set of rules to relax and restrain conjunctive queries (CQs). Firstly, we define rules that use the ontology to produce CQs that are relaxations/restrictions over any dataset. Secondly, we introduce a set of data-driven rules, that leverage patterns in the current dataset, to obtain more fine-grained relaxations and restrictions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.