Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The economic value of neighborhoods: Predicting real estate prices from the urban environment (1808.02547v1)

Published 7 Aug 2018 in cs.CY

Abstract: Housing costs have a significant impact on individuals, families, businesses, and governments. Recently, online companies such as Zillow have developed proprietary systems that provide automated estimates of housing prices without the immediate need of professional appraisers. Yet, our understanding of what drives the value of houses is very limited. In this paper, we use multiple sources of data to entangle the economic contribution of the neighborhood's characteristics such as walkability and security perception. We also develop and release a framework able to now-cast housing prices from Open data, without the need for historical transactions. Experiments involving 70,000 houses in 8 Italian cities highlight that the neighborhood's vitality and walkability seem to drive more than 20% of the housing value. Moreover, the use of this information improves the nowcast by 60%. Hence, the use of property's surroundings' characteristics can be an invaluable resource to appraise the economic and social value of houses after neighborhood changes and, potentially, anticipate gentrification.

Citations (29)

Summary

We haven't generated a summary for this paper yet.