Papers
Topics
Authors
Recent
Search
2000 character limit reached

Solution Paths of Variational Regularization Methods for Inverse Problems

Published 6 Aug 2018 in math.OC, cs.NA, and math.NA | (1808.01783v6)

Abstract: We consider a family of variational regularization functionals for a generic inverse problem, where the data fidelity and regularization term are given by powers of a Hilbert norm and an absolutely one-homogeneous functional, respectively, and the regularization parameter is interpreted as artificial time. We investigate the small and large time behavior of the associated solution paths and, in particular, prove finite extinction time for a large class of functionals. Depending on the powers, we also show that the solution paths are of bounded variation or even Lipschitz continuous. In addition, it will turn out that the models are "almost" mutually equivalent in terms of the minimizers they admit. Finally, we apply our results to define and compare two different non-linear spectral representations of data and show that only one of it is able to decompose a linear combination of non-linear eigenfunctions into the individual eigenfunctions. For that purpose, we will also briefly address piecewise affine solution paths.

Citations (22)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.