Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gray-box Adversarial Training (1808.01753v1)

Published 6 Aug 2018 in cs.CV, cs.LG, and stat.ML

Abstract: Adversarial samples are perturbed inputs crafted to mislead the machine learning systems. A training mechanism, called adversarial training, which presents adversarial samples along with clean samples has been introduced to learn robust models. In order to scale adversarial training for large datasets, these perturbations can only be crafted using fast and simple methods (e.g., gradient ascent). However, it is shown that adversarial training converges to a degenerate minimum, where the model appears to be robust by generating weaker adversaries. As a result, the models are vulnerable to simple black-box attacks. In this paper we, (i) demonstrate the shortcomings of existing evaluation policy, (ii) introduce novel variants of white-box and black-box attacks, dubbed gray-box adversarial attacks" based on which we propose novel evaluation method to assess the robustness of the learned models, and (iii) propose a novel variant of adversarial training, named Graybox Adversarial Training" that uses intermediate versions of the models to seed the adversaries. Experimental evaluation demonstrates that the models trained using our method exhibit better robustness compared to both undefended and adversarially trained model

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Vivek B. S. (3 papers)
  2. Konda Reddy Mopuri (19 papers)
  3. R. Venkatesh Babu (108 papers)
Citations (34)