Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A survey on Deep Learning Advances on Different 3D Data Representations (1808.01462v2)

Published 4 Aug 2018 in cs.CV

Abstract: 3D data is a valuable asset the computer vision filed as it provides rich information about the full geometry of sensed objects and scenes. Recently, with the availability of both large 3D datasets and computational power, it is today possible to consider applying deep learning to learn specific tasks on 3D data such as segmentation, recognition and correspondence. Depending on the considered 3D data representation, different challenges may be foreseen in using existent deep learning architectures. In this work, we provide a comprehensive overview about various 3D data representations highlighting the difference between Euclidean and non-Euclidean ones. We also discuss how Deep Learning methods are applied on each representation, analyzing the challenges to overcome.

Citations (90)

Summary

We haven't generated a summary for this paper yet.