Papers
Topics
Authors
Recent
2000 character limit reached

U-Finger: Multi-Scale Dilated Convolutional Network for Fingerprint Image Denoising and Inpainting

Published 29 Jul 2018 in cs.CV | (1807.10993v2)

Abstract: This paper studies the challenging problem of fingerprint image denoising and inpainting. To tackle the challenge of suppressing complicated artifacts (blur, brightness, contrast, elastic transformation, occlusion, scratch, resolution, rotation, and so on) while preserving fine textures, we develop a multi-scale convolutional network, termed U- Finger. Based on the domain expertise, we show that the usage of dilated convolutions as well as the removal of padding have important positive impacts on the final restoration performance, in addition to multi-scale cascaded feature modules. Our model achieves the overall ranking of No.2 in the ECCV 2018 Chalearn LAP Inpainting Competition Track 3 (Fingerprint Denoising and Inpainting). Among all participating teams, we obtain the MSE of 0.0231 (rank 2), PSNR 16.9688 dB (rank 2), and SSIM 0.8093 (rank 3) on the hold-out testing set.

Citations (22)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.