Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep End-to-end Fingerprint Denoising and Inpainting (1807.11888v3)

Published 31 Jul 2018 in cs.CV

Abstract: This work describes our winning solution for the Chalearn LAP In-painting Competition Track 3 - Fingerprint Denoising and In-painting. The objective of this competition is to reduce noise, remove the background pattern and replace missing parts of fingerprint images in order to simplify the verification made by humans or third-party software. In this paper, we use a U-Net like CNN model that performs all those steps end-to-end after being trained on the competition data in a fully supervised way. This architecture and training procedure achieved the best results on all three metrics of the competition.

Citations (6)

Summary

We haven't generated a summary for this paper yet.