Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multimodal Classification with Deep Convolutional-Recurrent Neural Networks for Electroencephalography (1807.10641v1)

Published 24 Jul 2018 in cs.CV

Abstract: Electroencephalography (EEG) has become the most significant input signal for brain computer interface (BCI) based systems. However, it is very difficult to obtain satisfactory classification accuracy due to traditional methods can not fully exploit multimodal information. Herein, we propose a novel approach to modeling cognitive events from EEG data by reducing it to a video classification problem, which is designed to preserve the multimodal information of EEG. In addition, optical flow is introduced to represent the variant information of EEG. We train a deep neural network (DNN) with convolutional neural network (CNN) and recurrent neural network (RNN) for the EEG classification task by using EEG video and optical flow. The experiments demonstrate that our approach has many advantages, such as more robustness and more accuracy in EEG classification tasks. According to our approach, we designed a mixed BCI-based rehabilitation support system to help stroke patients perform some basic operations.

Citations (41)

Summary

We haven't generated a summary for this paper yet.