Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 43 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 225 tok/s Pro
2000 character limit reached

Pull Message Passing for Nonparametric Belief Propagation (1807.10487v1)

Published 27 Jul 2018 in cs.CV and cs.LG

Abstract: We present a "pull" approach to approximate products of Gaussian mixtures within message updates for Nonparametric Belief Propagation (NBP) inference. Existing NBP methods often represent messages between continuous-valued latent variables as Gaussian mixture models. To avoid computational intractability in loopy graphs, NBP necessitates an approximation of the product of such mixtures. Sampling-based product approximations have shown effectiveness for NBP inference. However, such approximations used within the traditional "push" message update procedures quickly become computationally prohibitive for multi-modal distributions over high-dimensional variables. In contrast, we propose a "pull" method, as the Pull Message Passing for Nonparametric Belief propagation (PMPNBP) algorithm, and demonstrate its viability for efficient inference. We report results using an experiment from an existing NBP method, PAMPAS, for inferring the pose of an articulated structure in clutter. Results from this illustrative problem found PMPNBP has a greater ability to efficiently scale the number of components in its mixtures and, consequently, improve inference accuracy.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.