Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BSAS: Beetle Swarm Antennae Search Algorithm for Optimization Problems (1807.10470v1)

Published 27 Jul 2018 in cs.NE

Abstract: Beetle antennae search (BAS) is an efficient meta-heuristic algorithm. However, the convergent results of BAS rely heavily on the random beetle direction in every iterations. More specifically, different random seeds may cause different optimized results. Besides, the step-size update algorithm of BAS cannot guarantee objective become smaller in iterative process. In order to solve these problems, this paper proposes Beetle Swarm Antennae Search Algorithm (BSAS) which combines swarm intelligence algorithm with feedback-based step-size update strategy. BSAS employs k beetles to find more optimal position in each moving rather than one beetle. The step-size updates only when k beetles return without better choices. Experiments are carried out on building system identification. The results reveal the efficacy of the BSAS algorithm to avoid influence of random direction of Beetle. In addition, the estimation errors decrease as the beetles number goes up.

Citations (50)

Summary

We haven't generated a summary for this paper yet.