Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Prediction based on conditional distributions of vine copulas (1807.08429v2)

Published 23 Jul 2018 in stat.ME

Abstract: Vine copulas are a flexible tool for multivariate non-Gaussian distributions. For data from an observational study where the explanatory variables and response variables are measured together, a proposed vine copula regression method uses regular vines and handles mixed continuous and discrete variables. This method can efficiently compute the conditional distribution of the response variable given the explanatory variables. The performance of the proposed method is evaluated on simulated data sets and a real data set. The experiments demonstrate that the vine copula regression method is superior to linear regression in making inferences with conditional heteroscedasticity.

Summary

We haven't generated a summary for this paper yet.