Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

FastOrient: Lightweight Computer Vision for Wrist Control in Assistive Robotic Grasping (1807.08275v1)

Published 22 Jul 2018 in cs.RO and cs.CV

Abstract: Wearable and Assistive robotics for human grasp support are broadly either tele-operated robotic arms or act through orthotic control of a paralyzed user's hand. Such devices require correct orientation for successful and efficient grasping. In many human-robot assistive settings, the end-user is required to explicitly control the many degrees of freedom making effective or efficient control problematic. Here we are demonstrating the off-loading of low-level control of assistive robotics and active orthotics, through automatic end-effector orientation control for grasping. This paper describes a compact algorithm implementing fast computer vision techniques to obtain the orientation of the target object to be grasped, by segmenting the images acquired with a camera positioned on top of the end-effector of the robotic device. The rotation needed that optimises grasping is directly computed from the object's orientation. The algorithm has been evaluated in 6 different scene backgrounds and end-effector approaches to 26 different objects. 94.8% of the objects were detected in all backgrounds. Grasping of the object was achieved in 91.1% of the cases and has been evaluated with a robot simulator confirming the performance of the algorithm.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.