Delta-Decision Procedures for Exists-Forall Problems over the Reals
Abstract: Solving nonlinear SMT problems over real numbers has wide applications in robotics and AI. While significant progress is made in solving quantifier-free SMT formulas in the domain, quantified formulas have been much less investigated. We propose the first delta-complete algorithm for solving satisfiability of nonlinear SMT over real numbers with universal quantification and a wide range of nonlinear functions. Our methods combine ideas from counterexample-guided synthesis, interval constraint propagation, and local optimization. In particular, we show how special care is required in handling the interleaving of numerical and symbolic reasoning to ensure delta-completeness. In experiments, we show that the proposed algorithms can handle many new problems beyond the reach of existing SMT solvers.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.