Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-class Semantic Segmentation of Skin Lesions via Fully Convolutional Networks (1711.10449v2)

Published 28 Nov 2017 in cs.CV

Abstract: Melanoma is clinically difficult to distinguish from common benign skin lesions, particularly melanocytic naevus and seborrhoeic keratosis. The dermoscopic appearance of these lesions has huge intra-class variations and high inter-class visual similarities. Most current research is focusing on single-class segmentation irrespective of classes of skin lesions. In this work, we evaluate the performance of deep learning on multi-class segmentation of ISIC-2017 challenge dataset, which consists of 2,750 dermoscopic images. We propose an end-to-end solution using fully convolutional networks (FCNs) for multi-class semantic segmentation to automatically segment the melanoma, seborrhoeic keratosis and naevus. To improve the performance of FCNs, transfer learning and a hybrid loss function are used. We evaluate the performance of the deep learning segmentation methods for multi-class segmentation and lesion diagnosis (with post-processing method) on the testing set of the ISIC-2017 challenge dataset. The results showed that the two-tier level transfer learning FCN-8s achieved the overall best result with \textit{Dice} score of 78.5% in a naevus category, 65.3% in melanoma, and 55.7% in seborrhoeic keratosis in multi-class segmentation and Accuracy of 84.62% for recognition of melanoma in lesion diagnosis.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Manu Goyal (18 papers)
  2. Moi Hoon Yap (41 papers)
  3. Saeed Hassanpour (43 papers)
Citations (60)