Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diagnosis of Skin Cancer Using VGG16 and VGG19 Based Transfer Learning Models (2404.01160v1)

Published 1 Apr 2024 in cs.CV

Abstract: Today, skin cancer is considered as one of the most dangerous and common cancers in the world which demands special attention. Skin cancer may be developed in different types; including melanoma, actinic keratosis, basal cell carcinoma, squamous cell carcinoma, and Merkel cell carcinoma. Among them, melanoma is more unpredictable. Melanoma cancer can be diagnosed at early stages increasing the possibility of disease treatment. Automatic classification of skin lesions is a challenging task due to diverse forms and grades of the disease, demanding the requirement of novel methods implementation. Deep convolution neural networks (CNN) have shown an excellent potential for data and image classification. In this article, we inspect skin lesion classification problem using CNN techniques. Remarkably, we present that prominent classification accuracy of lesion detection can be obtained by proper designing and applying of transfer learning framework on pre-trained neural networks, without any requirement for data enlargement procedures i.e. merging VGG16 and VGG19 architectures pre-trained by a generic dataset with modified AlexNet network, and then, fine-tuned by a subject-specific dataset containing dermatology images. The convolution neural network was trained using 2541 images and, in particular, dropout was used to prevent the network from overfitting. Finally, the validity of the model was checked by applying the K-fold cross validation method. The proposed model increased classification accuracy by 3% (from 94.2% to 98.18%) in comparison with other methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. Jayalakshmi, G., Kumar, V.S.: Performance analysis of convolutional neural network (cnn) based cancerous skin lesion detection system. In: 2019 International Conference on Computational Intelligence in Data Science (ICCIDS), pp. 1–6 (2019). https://doi.org/10.1109/ICCIDS.2019.8862143 . IEEE Shahidi Zandi and Rajabi [2022] Shahidi Zandi, M., Rajabi, R.: Deep learning based framework for iranian license plate detection and recognition. Multimedia Tools and Applications 81(11), 15841–15858 (2022) https://doi.org/10.1007/s11042-022-12023-x Mahdavi and Rajabi [2020] Mahdavi, F., Rajabi, R.: Drone detection using convolutional neural networks. In: 2020 6th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS), pp. 1–5 (2020). https://doi.org/10.1109/ICSPIS51611.2020.9349620 . IEEE Brindha et al. [2020] Brindha, P.G., Rajalaxmi, R., Kabhilan, S., Sangitkumar, C., Sanjeevan, L.: Comparative study of svm and cnn in identifying the types of skin cancer. J. Crit. Rev 7(11), 640–643 (2020) https://doi.org/10.31838/jcr.07.11.117 Pham et al. [2020] Pham, T.C., Tran, C.T., Luu, M.S.K., Mai, D.A., Doucet, A., Luong, C.M., et al.: Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp. 1–6 (2020). https://doi.org/10.1109/MAPR49794.2020.9237778 . IEEE Mijwil [2021] Mijwil, M.M.: Skin cancer disease images classification using deep learning solutions. Multimedia Tools and Applications 80(17), 26255–26271 (2021) https://doi.org/10.1007/s11042-021-10952-7 Nawaz et al. [2021] Nawaz, M., Masood, M., Javed, A., Iqbal, J., Nazir, T., Mehmood, A., Ashraf, R.: Melanoma localization and classification through faster region-based convolutional neural network and svm. Multimedia Tools and Applications 80(19), 28953–28974 (2021) https://doi.org/10.1007/s11042-021-11120-7 Alzubaidi et al. [2021] Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Shahidi Zandi, M., Rajabi, R.: Deep learning based framework for iranian license plate detection and recognition. Multimedia Tools and Applications 81(11), 15841–15858 (2022) https://doi.org/10.1007/s11042-022-12023-x Mahdavi and Rajabi [2020] Mahdavi, F., Rajabi, R.: Drone detection using convolutional neural networks. In: 2020 6th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS), pp. 1–5 (2020). https://doi.org/10.1109/ICSPIS51611.2020.9349620 . IEEE Brindha et al. [2020] Brindha, P.G., Rajalaxmi, R., Kabhilan, S., Sangitkumar, C., Sanjeevan, L.: Comparative study of svm and cnn in identifying the types of skin cancer. J. Crit. Rev 7(11), 640–643 (2020) https://doi.org/10.31838/jcr.07.11.117 Pham et al. [2020] Pham, T.C., Tran, C.T., Luu, M.S.K., Mai, D.A., Doucet, A., Luong, C.M., et al.: Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp. 1–6 (2020). https://doi.org/10.1109/MAPR49794.2020.9237778 . IEEE Mijwil [2021] Mijwil, M.M.: Skin cancer disease images classification using deep learning solutions. Multimedia Tools and Applications 80(17), 26255–26271 (2021) https://doi.org/10.1007/s11042-021-10952-7 Nawaz et al. [2021] Nawaz, M., Masood, M., Javed, A., Iqbal, J., Nazir, T., Mehmood, A., Ashraf, R.: Melanoma localization and classification through faster region-based convolutional neural network and svm. Multimedia Tools and Applications 80(19), 28953–28974 (2021) https://doi.org/10.1007/s11042-021-11120-7 Alzubaidi et al. [2021] Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Mahdavi, F., Rajabi, R.: Drone detection using convolutional neural networks. In: 2020 6th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS), pp. 1–5 (2020). https://doi.org/10.1109/ICSPIS51611.2020.9349620 . IEEE Brindha et al. [2020] Brindha, P.G., Rajalaxmi, R., Kabhilan, S., Sangitkumar, C., Sanjeevan, L.: Comparative study of svm and cnn in identifying the types of skin cancer. J. Crit. Rev 7(11), 640–643 (2020) https://doi.org/10.31838/jcr.07.11.117 Pham et al. [2020] Pham, T.C., Tran, C.T., Luu, M.S.K., Mai, D.A., Doucet, A., Luong, C.M., et al.: Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp. 1–6 (2020). https://doi.org/10.1109/MAPR49794.2020.9237778 . IEEE Mijwil [2021] Mijwil, M.M.: Skin cancer disease images classification using deep learning solutions. Multimedia Tools and Applications 80(17), 26255–26271 (2021) https://doi.org/10.1007/s11042-021-10952-7 Nawaz et al. [2021] Nawaz, M., Masood, M., Javed, A., Iqbal, J., Nazir, T., Mehmood, A., Ashraf, R.: Melanoma localization and classification through faster region-based convolutional neural network and svm. Multimedia Tools and Applications 80(19), 28953–28974 (2021) https://doi.org/10.1007/s11042-021-11120-7 Alzubaidi et al. [2021] Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Brindha, P.G., Rajalaxmi, R., Kabhilan, S., Sangitkumar, C., Sanjeevan, L.: Comparative study of svm and cnn in identifying the types of skin cancer. J. Crit. Rev 7(11), 640–643 (2020) https://doi.org/10.31838/jcr.07.11.117 Pham et al. [2020] Pham, T.C., Tran, C.T., Luu, M.S.K., Mai, D.A., Doucet, A., Luong, C.M., et al.: Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp. 1–6 (2020). https://doi.org/10.1109/MAPR49794.2020.9237778 . IEEE Mijwil [2021] Mijwil, M.M.: Skin cancer disease images classification using deep learning solutions. Multimedia Tools and Applications 80(17), 26255–26271 (2021) https://doi.org/10.1007/s11042-021-10952-7 Nawaz et al. [2021] Nawaz, M., Masood, M., Javed, A., Iqbal, J., Nazir, T., Mehmood, A., Ashraf, R.: Melanoma localization and classification through faster region-based convolutional neural network and svm. Multimedia Tools and Applications 80(19), 28953–28974 (2021) https://doi.org/10.1007/s11042-021-11120-7 Alzubaidi et al. [2021] Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Pham, T.C., Tran, C.T., Luu, M.S.K., Mai, D.A., Doucet, A., Luong, C.M., et al.: Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp. 1–6 (2020). https://doi.org/10.1109/MAPR49794.2020.9237778 . IEEE Mijwil [2021] Mijwil, M.M.: Skin cancer disease images classification using deep learning solutions. Multimedia Tools and Applications 80(17), 26255–26271 (2021) https://doi.org/10.1007/s11042-021-10952-7 Nawaz et al. [2021] Nawaz, M., Masood, M., Javed, A., Iqbal, J., Nazir, T., Mehmood, A., Ashraf, R.: Melanoma localization and classification through faster region-based convolutional neural network and svm. Multimedia Tools and Applications 80(19), 28953–28974 (2021) https://doi.org/10.1007/s11042-021-11120-7 Alzubaidi et al. [2021] Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Mijwil, M.M.: Skin cancer disease images classification using deep learning solutions. Multimedia Tools and Applications 80(17), 26255–26271 (2021) https://doi.org/10.1007/s11042-021-10952-7 Nawaz et al. [2021] Nawaz, M., Masood, M., Javed, A., Iqbal, J., Nazir, T., Mehmood, A., Ashraf, R.: Melanoma localization and classification through faster region-based convolutional neural network and svm. Multimedia Tools and Applications 80(19), 28953–28974 (2021) https://doi.org/10.1007/s11042-021-11120-7 Alzubaidi et al. [2021] Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Nawaz, M., Masood, M., Javed, A., Iqbal, J., Nazir, T., Mehmood, A., Ashraf, R.: Melanoma localization and classification through faster region-based convolutional neural network and svm. Multimedia Tools and Applications 80(19), 28953–28974 (2021) https://doi.org/10.1007/s11042-021-11120-7 Alzubaidi et al. [2021] Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446
  2. Shahidi Zandi, M., Rajabi, R.: Deep learning based framework for iranian license plate detection and recognition. Multimedia Tools and Applications 81(11), 15841–15858 (2022) https://doi.org/10.1007/s11042-022-12023-x Mahdavi and Rajabi [2020] Mahdavi, F., Rajabi, R.: Drone detection using convolutional neural networks. In: 2020 6th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS), pp. 1–5 (2020). https://doi.org/10.1109/ICSPIS51611.2020.9349620 . IEEE Brindha et al. [2020] Brindha, P.G., Rajalaxmi, R., Kabhilan, S., Sangitkumar, C., Sanjeevan, L.: Comparative study of svm and cnn in identifying the types of skin cancer. J. Crit. Rev 7(11), 640–643 (2020) https://doi.org/10.31838/jcr.07.11.117 Pham et al. [2020] Pham, T.C., Tran, C.T., Luu, M.S.K., Mai, D.A., Doucet, A., Luong, C.M., et al.: Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp. 1–6 (2020). https://doi.org/10.1109/MAPR49794.2020.9237778 . IEEE Mijwil [2021] Mijwil, M.M.: Skin cancer disease images classification using deep learning solutions. Multimedia Tools and Applications 80(17), 26255–26271 (2021) https://doi.org/10.1007/s11042-021-10952-7 Nawaz et al. [2021] Nawaz, M., Masood, M., Javed, A., Iqbal, J., Nazir, T., Mehmood, A., Ashraf, R.: Melanoma localization and classification through faster region-based convolutional neural network and svm. Multimedia Tools and Applications 80(19), 28953–28974 (2021) https://doi.org/10.1007/s11042-021-11120-7 Alzubaidi et al. [2021] Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Mahdavi, F., Rajabi, R.: Drone detection using convolutional neural networks. In: 2020 6th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS), pp. 1–5 (2020). https://doi.org/10.1109/ICSPIS51611.2020.9349620 . IEEE Brindha et al. [2020] Brindha, P.G., Rajalaxmi, R., Kabhilan, S., Sangitkumar, C., Sanjeevan, L.: Comparative study of svm and cnn in identifying the types of skin cancer. J. Crit. Rev 7(11), 640–643 (2020) https://doi.org/10.31838/jcr.07.11.117 Pham et al. [2020] Pham, T.C., Tran, C.T., Luu, M.S.K., Mai, D.A., Doucet, A., Luong, C.M., et al.: Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp. 1–6 (2020). https://doi.org/10.1109/MAPR49794.2020.9237778 . IEEE Mijwil [2021] Mijwil, M.M.: Skin cancer disease images classification using deep learning solutions. Multimedia Tools and Applications 80(17), 26255–26271 (2021) https://doi.org/10.1007/s11042-021-10952-7 Nawaz et al. [2021] Nawaz, M., Masood, M., Javed, A., Iqbal, J., Nazir, T., Mehmood, A., Ashraf, R.: Melanoma localization and classification through faster region-based convolutional neural network and svm. Multimedia Tools and Applications 80(19), 28953–28974 (2021) https://doi.org/10.1007/s11042-021-11120-7 Alzubaidi et al. [2021] Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Brindha, P.G., Rajalaxmi, R., Kabhilan, S., Sangitkumar, C., Sanjeevan, L.: Comparative study of svm and cnn in identifying the types of skin cancer. J. Crit. Rev 7(11), 640–643 (2020) https://doi.org/10.31838/jcr.07.11.117 Pham et al. [2020] Pham, T.C., Tran, C.T., Luu, M.S.K., Mai, D.A., Doucet, A., Luong, C.M., et al.: Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp. 1–6 (2020). https://doi.org/10.1109/MAPR49794.2020.9237778 . IEEE Mijwil [2021] Mijwil, M.M.: Skin cancer disease images classification using deep learning solutions. Multimedia Tools and Applications 80(17), 26255–26271 (2021) https://doi.org/10.1007/s11042-021-10952-7 Nawaz et al. [2021] Nawaz, M., Masood, M., Javed, A., Iqbal, J., Nazir, T., Mehmood, A., Ashraf, R.: Melanoma localization and classification through faster region-based convolutional neural network and svm. Multimedia Tools and Applications 80(19), 28953–28974 (2021) https://doi.org/10.1007/s11042-021-11120-7 Alzubaidi et al. [2021] Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Pham, T.C., Tran, C.T., Luu, M.S.K., Mai, D.A., Doucet, A., Luong, C.M., et al.: Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp. 1–6 (2020). https://doi.org/10.1109/MAPR49794.2020.9237778 . IEEE Mijwil [2021] Mijwil, M.M.: Skin cancer disease images classification using deep learning solutions. Multimedia Tools and Applications 80(17), 26255–26271 (2021) https://doi.org/10.1007/s11042-021-10952-7 Nawaz et al. [2021] Nawaz, M., Masood, M., Javed, A., Iqbal, J., Nazir, T., Mehmood, A., Ashraf, R.: Melanoma localization and classification through faster region-based convolutional neural network and svm. Multimedia Tools and Applications 80(19), 28953–28974 (2021) https://doi.org/10.1007/s11042-021-11120-7 Alzubaidi et al. [2021] Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Mijwil, M.M.: Skin cancer disease images classification using deep learning solutions. Multimedia Tools and Applications 80(17), 26255–26271 (2021) https://doi.org/10.1007/s11042-021-10952-7 Nawaz et al. [2021] Nawaz, M., Masood, M., Javed, A., Iqbal, J., Nazir, T., Mehmood, A., Ashraf, R.: Melanoma localization and classification through faster region-based convolutional neural network and svm. Multimedia Tools and Applications 80(19), 28953–28974 (2021) https://doi.org/10.1007/s11042-021-11120-7 Alzubaidi et al. [2021] Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Nawaz, M., Masood, M., Javed, A., Iqbal, J., Nazir, T., Mehmood, A., Ashraf, R.: Melanoma localization and classification through faster region-based convolutional neural network and svm. Multimedia Tools and Applications 80(19), 28953–28974 (2021) https://doi.org/10.1007/s11042-021-11120-7 Alzubaidi et al. [2021] Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446
  3. Mahdavi, F., Rajabi, R.: Drone detection using convolutional neural networks. In: 2020 6th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS), pp. 1–5 (2020). https://doi.org/10.1109/ICSPIS51611.2020.9349620 . IEEE Brindha et al. [2020] Brindha, P.G., Rajalaxmi, R., Kabhilan, S., Sangitkumar, C., Sanjeevan, L.: Comparative study of svm and cnn in identifying the types of skin cancer. J. Crit. Rev 7(11), 640–643 (2020) https://doi.org/10.31838/jcr.07.11.117 Pham et al. [2020] Pham, T.C., Tran, C.T., Luu, M.S.K., Mai, D.A., Doucet, A., Luong, C.M., et al.: Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp. 1–6 (2020). https://doi.org/10.1109/MAPR49794.2020.9237778 . IEEE Mijwil [2021] Mijwil, M.M.: Skin cancer disease images classification using deep learning solutions. Multimedia Tools and Applications 80(17), 26255–26271 (2021) https://doi.org/10.1007/s11042-021-10952-7 Nawaz et al. [2021] Nawaz, M., Masood, M., Javed, A., Iqbal, J., Nazir, T., Mehmood, A., Ashraf, R.: Melanoma localization and classification through faster region-based convolutional neural network and svm. Multimedia Tools and Applications 80(19), 28953–28974 (2021) https://doi.org/10.1007/s11042-021-11120-7 Alzubaidi et al. [2021] Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Brindha, P.G., Rajalaxmi, R., Kabhilan, S., Sangitkumar, C., Sanjeevan, L.: Comparative study of svm and cnn in identifying the types of skin cancer. J. Crit. Rev 7(11), 640–643 (2020) https://doi.org/10.31838/jcr.07.11.117 Pham et al. [2020] Pham, T.C., Tran, C.T., Luu, M.S.K., Mai, D.A., Doucet, A., Luong, C.M., et al.: Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp. 1–6 (2020). https://doi.org/10.1109/MAPR49794.2020.9237778 . IEEE Mijwil [2021] Mijwil, M.M.: Skin cancer disease images classification using deep learning solutions. Multimedia Tools and Applications 80(17), 26255–26271 (2021) https://doi.org/10.1007/s11042-021-10952-7 Nawaz et al. [2021] Nawaz, M., Masood, M., Javed, A., Iqbal, J., Nazir, T., Mehmood, A., Ashraf, R.: Melanoma localization and classification through faster region-based convolutional neural network and svm. Multimedia Tools and Applications 80(19), 28953–28974 (2021) https://doi.org/10.1007/s11042-021-11120-7 Alzubaidi et al. [2021] Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Pham, T.C., Tran, C.T., Luu, M.S.K., Mai, D.A., Doucet, A., Luong, C.M., et al.: Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp. 1–6 (2020). https://doi.org/10.1109/MAPR49794.2020.9237778 . IEEE Mijwil [2021] Mijwil, M.M.: Skin cancer disease images classification using deep learning solutions. Multimedia Tools and Applications 80(17), 26255–26271 (2021) https://doi.org/10.1007/s11042-021-10952-7 Nawaz et al. [2021] Nawaz, M., Masood, M., Javed, A., Iqbal, J., Nazir, T., Mehmood, A., Ashraf, R.: Melanoma localization and classification through faster region-based convolutional neural network and svm. Multimedia Tools and Applications 80(19), 28953–28974 (2021) https://doi.org/10.1007/s11042-021-11120-7 Alzubaidi et al. [2021] Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Mijwil, M.M.: Skin cancer disease images classification using deep learning solutions. Multimedia Tools and Applications 80(17), 26255–26271 (2021) https://doi.org/10.1007/s11042-021-10952-7 Nawaz et al. [2021] Nawaz, M., Masood, M., Javed, A., Iqbal, J., Nazir, T., Mehmood, A., Ashraf, R.: Melanoma localization and classification through faster region-based convolutional neural network and svm. Multimedia Tools and Applications 80(19), 28953–28974 (2021) https://doi.org/10.1007/s11042-021-11120-7 Alzubaidi et al. [2021] Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Nawaz, M., Masood, M., Javed, A., Iqbal, J., Nazir, T., Mehmood, A., Ashraf, R.: Melanoma localization and classification through faster region-based convolutional neural network and svm. Multimedia Tools and Applications 80(19), 28953–28974 (2021) https://doi.org/10.1007/s11042-021-11120-7 Alzubaidi et al. [2021] Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446
  4. Brindha, P.G., Rajalaxmi, R., Kabhilan, S., Sangitkumar, C., Sanjeevan, L.: Comparative study of svm and cnn in identifying the types of skin cancer. J. Crit. Rev 7(11), 640–643 (2020) https://doi.org/10.31838/jcr.07.11.117 Pham et al. [2020] Pham, T.C., Tran, C.T., Luu, M.S.K., Mai, D.A., Doucet, A., Luong, C.M., et al.: Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp. 1–6 (2020). https://doi.org/10.1109/MAPR49794.2020.9237778 . IEEE Mijwil [2021] Mijwil, M.M.: Skin cancer disease images classification using deep learning solutions. Multimedia Tools and Applications 80(17), 26255–26271 (2021) https://doi.org/10.1007/s11042-021-10952-7 Nawaz et al. [2021] Nawaz, M., Masood, M., Javed, A., Iqbal, J., Nazir, T., Mehmood, A., Ashraf, R.: Melanoma localization and classification through faster region-based convolutional neural network and svm. Multimedia Tools and Applications 80(19), 28953–28974 (2021) https://doi.org/10.1007/s11042-021-11120-7 Alzubaidi et al. [2021] Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Pham, T.C., Tran, C.T., Luu, M.S.K., Mai, D.A., Doucet, A., Luong, C.M., et al.: Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp. 1–6 (2020). https://doi.org/10.1109/MAPR49794.2020.9237778 . IEEE Mijwil [2021] Mijwil, M.M.: Skin cancer disease images classification using deep learning solutions. Multimedia Tools and Applications 80(17), 26255–26271 (2021) https://doi.org/10.1007/s11042-021-10952-7 Nawaz et al. [2021] Nawaz, M., Masood, M., Javed, A., Iqbal, J., Nazir, T., Mehmood, A., Ashraf, R.: Melanoma localization and classification through faster region-based convolutional neural network and svm. Multimedia Tools and Applications 80(19), 28953–28974 (2021) https://doi.org/10.1007/s11042-021-11120-7 Alzubaidi et al. [2021] Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Mijwil, M.M.: Skin cancer disease images classification using deep learning solutions. Multimedia Tools and Applications 80(17), 26255–26271 (2021) https://doi.org/10.1007/s11042-021-10952-7 Nawaz et al. [2021] Nawaz, M., Masood, M., Javed, A., Iqbal, J., Nazir, T., Mehmood, A., Ashraf, R.: Melanoma localization and classification through faster region-based convolutional neural network and svm. Multimedia Tools and Applications 80(19), 28953–28974 (2021) https://doi.org/10.1007/s11042-021-11120-7 Alzubaidi et al. [2021] Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Nawaz, M., Masood, M., Javed, A., Iqbal, J., Nazir, T., Mehmood, A., Ashraf, R.: Melanoma localization and classification through faster region-based convolutional neural network and svm. Multimedia Tools and Applications 80(19), 28953–28974 (2021) https://doi.org/10.1007/s11042-021-11120-7 Alzubaidi et al. [2021] Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446
  5. Pham, T.C., Tran, C.T., Luu, M.S.K., Mai, D.A., Doucet, A., Luong, C.M., et al.: Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of deep cnn. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp. 1–6 (2020). https://doi.org/10.1109/MAPR49794.2020.9237778 . IEEE Mijwil [2021] Mijwil, M.M.: Skin cancer disease images classification using deep learning solutions. Multimedia Tools and Applications 80(17), 26255–26271 (2021) https://doi.org/10.1007/s11042-021-10952-7 Nawaz et al. [2021] Nawaz, M., Masood, M., Javed, A., Iqbal, J., Nazir, T., Mehmood, A., Ashraf, R.: Melanoma localization and classification through faster region-based convolutional neural network and svm. Multimedia Tools and Applications 80(19), 28953–28974 (2021) https://doi.org/10.1007/s11042-021-11120-7 Alzubaidi et al. [2021] Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Mijwil, M.M.: Skin cancer disease images classification using deep learning solutions. Multimedia Tools and Applications 80(17), 26255–26271 (2021) https://doi.org/10.1007/s11042-021-10952-7 Nawaz et al. [2021] Nawaz, M., Masood, M., Javed, A., Iqbal, J., Nazir, T., Mehmood, A., Ashraf, R.: Melanoma localization and classification through faster region-based convolutional neural network and svm. Multimedia Tools and Applications 80(19), 28953–28974 (2021) https://doi.org/10.1007/s11042-021-11120-7 Alzubaidi et al. [2021] Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Nawaz, M., Masood, M., Javed, A., Iqbal, J., Nazir, T., Mehmood, A., Ashraf, R.: Melanoma localization and classification through faster region-based convolutional neural network and svm. Multimedia Tools and Applications 80(19), 28953–28974 (2021) https://doi.org/10.1007/s11042-021-11120-7 Alzubaidi et al. [2021] Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446
  6. Mijwil, M.M.: Skin cancer disease images classification using deep learning solutions. Multimedia Tools and Applications 80(17), 26255–26271 (2021) https://doi.org/10.1007/s11042-021-10952-7 Nawaz et al. [2021] Nawaz, M., Masood, M., Javed, A., Iqbal, J., Nazir, T., Mehmood, A., Ashraf, R.: Melanoma localization and classification through faster region-based convolutional neural network and svm. Multimedia Tools and Applications 80(19), 28953–28974 (2021) https://doi.org/10.1007/s11042-021-11120-7 Alzubaidi et al. [2021] Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Nawaz, M., Masood, M., Javed, A., Iqbal, J., Nazir, T., Mehmood, A., Ashraf, R.: Melanoma localization and classification through faster region-based convolutional neural network and svm. Multimedia Tools and Applications 80(19), 28953–28974 (2021) https://doi.org/10.1007/s11042-021-11120-7 Alzubaidi et al. [2021] Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446
  7. Nawaz, M., Masood, M., Javed, A., Iqbal, J., Nazir, T., Mehmood, A., Ashraf, R.: Melanoma localization and classification through faster region-based convolutional neural network and svm. Multimedia Tools and Applications 80(19), 28953–28974 (2021) https://doi.org/10.1007/s11042-021-11120-7 Alzubaidi et al. [2021] Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446
  8. Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13(7), 1590 (2021) https://doi.org/10.3390/cancers13071590 Ashraf et al. [2020] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446
  9. Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., Maqsood, M.: Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 8, 147858–147871 (2020) https://doi.org/10.1109/ACCESS.2020.3014701 Rafi and Shubair [2021] Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446
  10. Rafi, T.H., Shubair, R.M.: A scaled-2D cnn for skin cancer diagnosis. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2021). https://doi.org/10.1109/CIBCB49929.2021.9562888 . IEEE Lafraxo et al. [2022] Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446
  11. Lafraxo, S., Ansari, M.E., Charfi, S.: Melanet: an effective deep learning framework for melanoma detection using dermoscopic images. Multimedia Tools and Applications 81(11), 16021–16045 (2022) https://doi.org/10.1007/s11042-022-12521-y Rasel et al. [2022] Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446
  12. Rasel, M., Obaidellah, U.H., Kareem, S.A.: convolutional neural network-based skin lesion classification with variable nonlinear activation functions. IEEE Access 10, 83398–83414 (2022) https://doi.org/10.1109/ACCESS.2022.3196911 Hassan et al. [2023a] Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446
  13. Hassan, E., Shams, M.Y., Hikal, N.A., Elmougy, S.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools and Applications 82(11), 16591–16633 (2023) https://doi.org/10.1007/s11042-022-13820-0 Hassan et al. [2023b] Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446
  14. Hassan, E., Elmougy, S., Ibraheem, M.R., Hossain, M.S., AlMutib, K., Ghoneim, A., AlQahtani, S.A., Talaat, F.M.: Enhanced deep learning model for classification of retinal optical coherence tomography images. Sensors 23(12), 5393 (2023) https://doi.org/10.3390/s23125393 Alahmadi and Alghamdi [2022] Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446
  15. Alahmadi, M.D., Alghamdi, W.: Semi-supervised skin lesion segmentation with coupling cnn and transformer features. IEEE Access 10, 122560–122569 (2022) https://doi.org/10.1109/ACCESS.2022.3224005 Wu et al. [2022] Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446
  16. Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: Fat-net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis 76, 102327 (2022) https://doi.org/10.1016/j.media.2021.102327 Hoefler et al. [2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446
  17. Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021) https://doi.org/10.1145/3578356.3592583 Coşkun et al. [2017] Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446
  18. Coşkun, M., YILDIRIM, Ö., Ayşegül, U., Demir, Y.: An overview of popular deep learning methods. European Journal of Technique (EJT) 7(2), 165–176 (2017) Norouzi [2019] Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446
  19. Norouzi, S.: Structured dropconnect for convolutional neural networks (2019) Hinton et al. [2012] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446
  20. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) https://doi.org/10.48550/arXiv.1207.0580 Gao and Mosalam [2018] Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446
  21. Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Computer-Aided Civil and Infrastructure Engineering 33(9), 748–768 (2018) https://doi.org/10.1111/mice.12363 Zhang and Zhang [2021] Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446
  22. Zhang, T., Zhang, X.: Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2021) https://doi.org/10.1109/LGRS.2021.3119875 Fahad et al. [2023] Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446
  23. Fahad, N.M., Sakib, S., Khan Raiaan, M.A., Hossain Mukta, M.S.: Skinnet-8: An efficient cnn architecture for classifying skin cancer on an imbalanced dataset. In: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2023). https://doi.org/10.1109/ECCE57851.2023.10101527 Rotemberg et al. [2021] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446
  24. Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J., Soyer, H.P.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data 8(34), 1–8 (2021) https://doi.org/10.34970/2020-ds01 Giotis et al. [2015] Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446
  25. Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications 42, 6578–6585 (2015) https://doi.org/10.1016/j.eswa.2015.04.034 Sonsare and Gunavathi [2021] Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446 Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446
  26. Sonsare, P.M., Gunavathi, C.: Cascading 1D-convnet bidirectional long short term memory network with modified cocob optimizer: A novel approach for protein secondary structure prediction. Chaos, Solitons & Fractals 153, 111446 (2021) https://doi.org/10.1016/j.chaos.2021.111446
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Amir Faghihi (1 paper)
  2. Mohammadreza Fathollahi (1 paper)
  3. Roozbeh Rajabi (22 papers)
Citations (13)

Summary

We haven't generated a summary for this paper yet.