Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Generative Adversarial Privacy (1807.05306v3)

Published 13 Jul 2018 in cs.LG, cs.CR, cs.GT, cs.IT, math.IT, and stat.ML

Abstract: We present a data-driven framework called generative adversarial privacy (GAP). Inspired by recent advancements in generative adversarial networks (GANs), GAP allows the data holder to learn the privatization mechanism directly from the data. Under GAP, finding the optimal privacy mechanism is formulated as a constrained minimax game between a privatizer and an adversary. We show that for appropriately chosen adversarial loss functions, GAP provides privacy guarantees against strong information-theoretic adversaries. We also evaluate GAP's performance on the GENKI face database.

Citations (41)

Summary

We haven't generated a summary for this paper yet.