2000 character limit reached
Optimization over Continuous and Multi-dimensional Decisions with Observational Data
Published 11 Jul 2018 in stat.ML and cs.LG | (1807.04183v2)
Abstract: We consider the optimization of an uncertain objective over continuous and multi-dimensional decision spaces in problems in which we are only provided with observational data. We propose a novel algorithmic framework that is tractable, asymptotically consistent, and superior to comparable methods on example problems. Our approach leverages predictive machine learning methods and incorporates information on the uncertainty of the predicted outcomes for the purpose of prescribing decisions. We demonstrate the efficacy of our method on examples involving both synthetic and real data sets.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.