On the ergodicity of certain Markov chains in random environments
Abstract: We study the ergodic behaviour of a discrete-time process $X$ which is a Markov chain in a stationary random environment. The laws of $X_t$ are shown to converge to a limiting law in (weighted) total variation distance as $t\to\infty$. Convergence speed is estimated and an ergodic theorem is established for functionals of $X$. Our hypotheses on $X$ combine the standard "small set" and "drift" conditions for geometrically ergodic Markov chains with conditions on the growth rate of a certain "maximal process" of the random environment. We are able to cover a wide range of models that have heretofore been untractable. In particular, our results are pertinent to difference equations modulated by a stationary Gaussian process. Such equations arise in applications, for example, in discretized stochastic volatility models of mathematical finance.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.