Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Topic-Guided Attention for Image Captioning (1807.03514v1)

Published 10 Jul 2018 in cs.CV

Abstract: Attention mechanisms have attracted considerable interest in image captioning because of its powerful performance. Existing attention-based models use feedback information from the caption generator as guidance to determine which of the image features should be attended to. A common defect of these attention generation methods is that they lack a higher-level guiding information from the image itself, which sets a limit on selecting the most informative image features. Therefore, in this paper, we propose a novel attention mechanism, called topic-guided attention, which integrates image topics in the attention model as a guiding information to help select the most important image features. Moreover, we extract image features and image topics with separate networks, which can be fine-tuned jointly in an end-to-end manner during training. The experimental results on the benchmark Microsoft COCO dataset show that our method yields state-of-art performance on various quantitative metrics.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zhihao Zhu (11 papers)
  2. Zhan Xue (2 papers)
  3. Zejian Yuan (24 papers)
Citations (23)