Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Structured Prediction Approach for Label Ranking (1807.02374v1)

Published 6 Jul 2018 in stat.ML and cs.LG

Abstract: We propose to solve a label ranking problem as a structured output regression task. We adopt a least square surrogate loss approach that solves a supervised learning problem in two steps: the regression step in a well-chosen feature space and the pre-image step. We use specific feature maps/embeddings for ranking data, which convert any ranking/permutation into a vector representation. These embeddings are all well-tailored for our approach, either by resulting in consistent estimators, or by solving trivially the pre-image problem which is often the bottleneck in structured prediction. We also propose their natural extension to the case of partial rankings and prove their efficiency on real-world datasets.

Citations (36)

Summary

We haven't generated a summary for this paper yet.