Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Context Data Categories and Privacy Model for Mobile Data Collection Apps (1807.01515v1)

Published 4 Jul 2018 in cs.CY and cs.HC

Abstract: Context-aware applications stemming from diverse fields like mobile health, recommender systems, and mobile commerce potentially benefit from knowing aspects of the user's personality. As filling out personality questionnaires is tedious, we propose the prediction of the user's personality from smartphone sensor and usage data. In order to collect data for researching the relationship between smartphone data and personality, we developed the Android app TYDR (Track Your Daily Routine) which tracks smartphone data and utilizes psychometric personality questionnaires. With TYDR, we track a larger variety of smartphone data than similar existing apps, including metadata on notifications, photos taken, and music played back by the user. For the development of TYDR, we introduce a general context data model consisting of four categories that focus on the user's different types of interactions with the smartphone: physical conditions and activity, device status and usage, core functions usage, and app usage. On top of this, we develop the privacy model PM-MoDaC specifically for apps related to the collection of mobile data, consisting of nine proposed privacy measures. We present the implementation of all of those measures in TYDR. Although the utilization of the user's personality based on the usage of his or her smartphone is a challenging endeavor, it seems to be a promising approach for various types of context-aware mobile applications.

Citations (42)

Summary

We haven't generated a summary for this paper yet.