Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Limit theorems for sequential MCMC methods (1807.01057v2)

Published 3 Jul 2018 in stat.CO

Abstract: Sequential Monte Carlo (SMC) methods, also known as particle filters, constitute a class of algorithms used to approximate expectations with respect to a sequence of probability distributions as well as the normalising constants of those distributions. Sequential MCMC methods are an alternative class of techniques addressing similar problems in which particles are sampled according to an MCMC kernel rather than conditionally independently at each time step. These methods were introduced over twenty years ago by Berzuini et al. (1997). Recently, there has been a renewed interest in such algorithms as they demonstrate an empirical performance superior to that of SMC methods in some applications. We establish a strong law of large numbers and a central limit theorem for sequential MCMC methods and provide conditions under which errors can be controlled uniformly in time. In the context of state-space models, we provide conditions under which sequential MCMC methods can indeed outperform standard SMC methods in terms of asymptotic variance of the corresponding Monte Carlo estimators.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.