Papers
Topics
Authors
Recent
Search
2000 character limit reached

Improving part-of-speech tagging via multi-task learning and character-level word representations

Published 2 Jul 2018 in cs.CL, cs.AI, cs.LG, and stat.ML | (1807.00818v1)

Abstract: In this paper, we explore the ways to improve POS-tagging using various types of auxiliary losses and different word representations. As a baseline, we utilized a BiLSTM tagger, which is able to achieve state-of-the-art results on the sequence labelling tasks. We developed a new method for character-level word representation using feedforward neural network. Such representation gave us better results in terms of speed and performance of the model. We also applied a novel technique of pretraining such word representations with existing word vectors. Finally, we designed a new variant of auxiliary loss for sequence labelling tasks: an additional prediction of the neighbour labels. Such loss forces a model to learn the dependencies in-side a sequence of labels and accelerates the process of training. We test these methods on English and Russian languages.

Citations (16)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.