Improving part-of-speech tagging via multi-task learning and character-level word representations
Abstract: In this paper, we explore the ways to improve POS-tagging using various types of auxiliary losses and different word representations. As a baseline, we utilized a BiLSTM tagger, which is able to achieve state-of-the-art results on the sequence labelling tasks. We developed a new method for character-level word representation using feedforward neural network. Such representation gave us better results in terms of speed and performance of the model. We also applied a novel technique of pretraining such word representations with existing word vectors. Finally, we designed a new variant of auxiliary loss for sequence labelling tasks: an additional prediction of the neighbour labels. Such loss forces a model to learn the dependencies in-side a sequence of labels and accelerates the process of training. We test these methods on English and Russian languages.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.