Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatiotemporal Prediction of Ambulance Demand using Gaussian Process Regression (1806.10873v1)

Published 28 Jun 2018 in stat.ML, cs.LG, and stat.AP

Abstract: Accurately predicting when and where ambulance call-outs occur can reduce response times and ensure the patient receives urgent care sooner. Here we present a novel method for ambulance demand prediction using Gaussian process regression (GPR) in time and geographic space. The method exhibits superior accuracy to MEDIC, a method which has been used in industry. The use of GPR has additional benefits such as the quantification of uncertainty with each prediction, the choice of kernel functions to encode prior knowledge and the ability to capture spatial correlation. Measures to increase the utility of GPR in the current context, with large training sets and a Poisson-distributed output, are outlined.

Citations (2)

Summary

We haven't generated a summary for this paper yet.