Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Visually-Grounded Semantics from Contrastive Adversarial Samples (1806.10348v1)

Published 27 Jun 2018 in cs.CL and cs.CV

Abstract: We study the problem of grounding distributional representations of texts on the visual domain, namely visual-semantic embeddings (VSE for short). Begin with an insightful adversarial attack on VSE embeddings, we show the limitation of current frameworks and image-text datasets (e.g., MS-COCO) both quantitatively and qualitatively. The large gap between the number of possible constitutions of real-world semantics and the size of parallel data, to a large extent, restricts the model to establish the link between textual semantics and visual concepts. We alleviate this problem by augmenting the MS-COCO image captioning datasets with textual contrastive adversarial samples. These samples are synthesized using linguistic rules and the WordNet knowledge base. The construction procedure is both syntax- and semantics-aware. The samples enforce the model to ground learned embeddings to concrete concepts within the image. This simple but powerful technique brings a noticeable improvement over the baselines on a diverse set of downstream tasks, in addition to defending known-type adversarial attacks. We release the codes at https://github.com/ExplorerFreda/VSE-C.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Haoyue Shi (13 papers)
  2. Jiayuan Mao (55 papers)
  3. Tete Xiao (19 papers)
  4. Yuning Jiang (106 papers)
  5. Jian Sun (414 papers)
Citations (48)