Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Independent Deeply Learned Matrix Analysis for Multichannel Audio Source Separation (1806.10307v1)

Published 27 Jun 2018 in eess.AS and cs.SD

Abstract: In this paper, we address a multichannel audio source separation task and propose a new efficient method called independent deeply learned matrix analysis (IDLMA). IDLMA estimates the demixing matrix in a blind manner and updates the time-frequency structures of each source using a pretrained deep neural network (DNN). Also, we introduce a complex Student's t-distribution as a generalized source generative model including both complex Gaussian and Cauchy distributions. Experiments are conducted using music signals with a training dataset, and the results show the validity of the proposed method in terms of separation accuracy and computational cost.

Citations (29)

Summary

We haven't generated a summary for this paper yet.