Papers
Topics
Authors
Recent
2000 character limit reached

Computational Analysis of Insurance Complaints: GEICO Case Study

Published 26 Jun 2018 in stat.AP, cs.CL, cs.IR, and stat.ML | (1806.09736v1)

Abstract: The online environment has provided a great opportunity for insurance policyholders to share their complaints with respect to different services. These complaints can reveal valuable information for insurance companies who seek to improve their services; however, analyzing a huge number of online complaints is a complicated task for human and must involve computational methods to create an efficient process. This research proposes a computational approach to characterize the major topics of a large number of online complaints. Our approach is based on using the topic modeling approach to disclose the latent semantic of complaints. The proposed approach deployed on thousands of GEICO negative reviews. Analyzing 1,371 GEICO complaints indicates that there are 30 major complains in four categories: (1) customer service, (2) insurance coverage, paperwork, policy, and reports, (3) legal issues, and (4) costs, estimates, and payments. This research approach can be used in other applications to explore a large number of reviews.

Citations (21)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.