Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimizing the Wisdom of the Crowd: Inference, Learning, and Teaching (1806.09018v1)

Published 23 Jun 2018 in stat.ML, cs.HC, and cs.LG

Abstract: The unprecedented demand for large amount of data has catalyzed the trend of combining human insights with machine learning techniques, which facilitate the use of crowdsourcing to enlist label information both effectively and efficiently. The classic work on crowdsourcing mainly focuses on the label inference problem under the categorization setting. However, inferring the true label requires sophisticated aggregation models that usually can only perform well under certain assumptions. Meanwhile, no matter how complicated the aggregation model is, the true model that generated the crowd labels remains unknown. Therefore, the label inference problem can never infer the ground truth perfectly. Based on the fact that the crowdsourcing labels are abundant and utilizing aggregation will lose such kind of rich annotation information (e.g., which worker provided which labels), we believe that it is critical to take the diverse labeling abilities of the crowdsourcing workers as well as their correlations into consideration. To address the above challenge, we propose to tackle three research problems, namely inference, learning, and teaching.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yao Zhou (72 papers)
  2. Jingrui He (87 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.