Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Synthesizing Diverse, High-Quality Audio Textures (1806.08002v1)

Published 20 Jun 2018 in cs.SD and eess.AS

Abstract: Texture synthesis techniques based on matching the Gram matrix of feature activations in neural networks have achieved spectacular success in the image domain. In this paper we extend these techniques to the audio domain. We demonstrate that synthesizing diverse audio textures is challenging, and argue that this is because audio data is relatively low-dimensional. We therefore introduce two new terms to the original Grammian loss: an autocorrelation term that preserves rhythm, and a diversity term that encourages the optimization procedure to synthesize unique textures. We quantitatively study the impact of our design choices on the quality of the synthesized audio by introducing an audio analogue to the Inception loss which we term the VGGish loss. We show that there is a trade-off between the diversity and quality of the synthesized audio using this technique. We additionally perform a number of experiments to qualitatively study how these design choices impact the quality of the synthesized audio. Finally we describe the implications of these results for the problem of audio style transfer.

Citations (6)

Summary

We haven't generated a summary for this paper yet.