Papers
Topics
Authors
Recent
2000 character limit reached

Semantic Compression of Episodic Memories (1806.07990v1)

Published 20 Jun 2018 in q-bio.NC

Abstract: Storing knowledge of an agent's environment in the form of a probabilistic generative model has been established as a crucial ingredient in a multitude of cognitive tasks. Perception has been formalised as probabilistic inference over the state of latent variables, whereas in decision making the model of the environment is used to predict likely consequences of actions. Such generative models have earlier been proposed to underlie semantic memory but it remained unclear if this model also underlies the efficient storage of experiences in episodic memory. We formalise the compression of episodes in the normative framework of information theory and argue that semantic memory provides the distortion function for compression of experiences. Recent advances and insights from machine learning allow us to approximate semantic compression in naturalistic domains and contrast the resulting deviations in compressed episodes with memory errors observed in the experimental literature on human memory.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.