Papers
Topics
Authors
Recent
Search
2000 character limit reached

Extracting News Events from Microblogs

Published 20 Jun 2018 in cs.CL, cs.IR, and cs.SI | (1806.07573v1)

Abstract: Twitter stream has become a large source of information for many people, but the magnitude of tweets and the noisy nature of its content have made harvesting the knowledge from Twitter a challenging task for researchers for a long time. Aiming at overcoming some of the main challenges of extracting the hidden information from tweet streams, this work proposes a new approach for real-time detection of news events from the Twitter stream. We divide our approach into three steps. The first step is to use a neural network or deep learning to detect news-relevant tweets from the stream. The second step is to apply a novel streaming data clustering algorithm to the detected news tweets to form news events. The third and final step is to rank the detected events based on the size of the event clusters and growth speed of the tweet frequencies. We evaluate the proposed system on a large, publicly available corpus of annotated news events from Twitter. As part of the evaluation, we compare our approach with a related state-of-the-art solution. Overall, our experiments and user-based evaluation show that our approach on detecting current (real) news events delivers a state-of-the-art performance.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.