Papers
Topics
Authors
Recent
Search
2000 character limit reached

Event Detection in Twitter Stream using Weighted Dynamic Heartbeat Graph Approach

Published 22 Feb 2019 in cs.SI | (1902.08522v1)

Abstract: Tweets about everyday events are published on Twitter. Detecting such events is a challenging task due to the diverse and noisy contents of Twitter. In this paper, we propose a novel approach named Weighted Dynamic Heartbeat Graph (WDHG) to detect events from the Twitter stream. Once an event is detected in a Twitter stream, WDHG suppresses it in later stages, in order to detect new emerging events. This unique characteristic makes the proposed approach sensitive to capture emerging events efficiently. Experiments are performed on three real-life benchmark datasets: FA Cup Final 2012, Super Tuesday 2012, and the US Elections 2012. Results show considerable improvement over existing event detection methods in most cases.

Citations (39)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.