Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Frequency Domain Bootstrap for General Stationary Processes (1806.06523v1)

Published 18 Jun 2018 in stat.ME

Abstract: Existing frequency domain methods for bootstrapping time series have a limited range. Consider for instance the class of spectral mean statistics (also called integrated periodograms) which includes many important statistics in time series analysis, such as sample autocovariances and autocorrelations among other things. Essentially, such frequency domain bootstrap procedures cover the case of linear time series with independent innovations, and some even require the time series to be Gaussian. In this paper we propose a new, frequency domain bootstrap method which is consistent for a much wider range of stationary processes and can be applied to a large class of periodogram-based statistics. It introduces a new concept of convolved periodograms of smaller samples which uses pseudo periodograms of subsamples generated in a way that correctly imitates the weak dependence structure of the periodogram. %The new bootstrap procedure %corrects for those aspects of the distribution of spectral means that cannot be mimicked by existing procedures. We show consistency for this procedure for a general class of stationary time series, ranging clearly beyond linear processes, and for general spectral means and ratio statistics. Furthermore, and for the class of spectral means, we also show, how, using this new approach, existing bootstrap methods, which replicate appropriately only the dominant part of the distribution of interest, can be corrected. The finite sample performance of the new bootstrap procedure is illustrated via simulations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.