Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Addendum to "HTN Acting: A Formalism and an Algorithm" (1806.02127v2)

Published 6 Jun 2018 in cs.AI

Abstract: Hierarchical Task Network (HTN) planning is a practical and efficient approach to planning when the 'standard operating procedures' for a domain are available. Like Belief-Desire-Intention (BDI) agent reasoning, HTN planning performs hierarchical and context-based refinement of goals into subgoals and basic actions. However, while HTN planners 'lookahead' over the consequences of choosing one refinement over another, BDI agents interleave refinement with acting. There has been renewed interest in making HTN planners behave more like BDI agent systems, e.g. to have a unified representation for acting and planning. However, past work on the subject has remained informal or implementation-focused. This paper is a formal account of 'HTN acting', which supports interleaved deliberation, acting, and failure recovery. We use the syntax of the most general HTN planning formalism and build on its core semantics, and we provide an algorithm which combines our new formalism with the processing of exogenous events. We also study the properties of HTN acting and its relation to HTN planning.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Lavindra de Silva (7 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.