Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Image Compression via End-to-End Learning (1806.01496v1)

Published 5 Jun 2018 in eess.IV and cs.CV

Abstract: We present a lossy image compression method based on deep convolutional neural networks (CNNs), which outperforms the existing BPG, WebP, JPEG2000 and JPEG as measured via multi-scale structural similarity (MS-SSIM), at the same bit rate. Currently, most of the CNNs based approaches train the network using a L2 loss between the reconstructions and the ground-truths in the pixel domain, which leads to over-smoothing results and visual quality degradation especially at a very low bit rate. Therefore, we improve the subjective quality with the combination of a perception loss and an adversarial loss additionally. To achieve better rate-distortion optimization (RDO), we also introduce an easy-to-hard transfer learning when adding quantization error and rate constraint. Finally, we evaluate our method on public Kodak and the Test Dataset P/M released by the Computer Vision Lab of ETH Zurich, resulting in averaged 7.81% and 19.1% BD-rate reduction over BPG, respectively.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Haojie Liu (20 papers)
  2. Tong Chen (200 papers)
  3. Qiu Shen (25 papers)
  4. Tao Yue (37 papers)
  5. Zhan Ma (91 papers)
Citations (40)