Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Challenges in High-dimensional Reinforcement Learning with Evolution Strategies (1806.01224v2)

Published 4 Jun 2018 in cs.NE

Abstract: Evolution Strategies (ESs) have recently become popular for training deep neural networks, in particular on reinforcement learning tasks, a special form of controller design. Compared to classic problems in continuous direct search, deep networks pose extremely high-dimensional optimization problems, with many thousands or even millions of variables. In addition, many control problems give rise to a stochastic fitness function. Considering the relevance of the application, we study the suitability of evolution strategies for high-dimensional, stochastic problems. Our results give insights into which algorithmic mechanisms of modern ES are of value for the class of problems at hand, and they reveal principled limitations of the approach. They are in line with our theoretical understanding of ESs. We show that combining ESs that offer reduced internal algorithm cost with uncertainty handling techniques yields promising methods for this class of problems.

Citations (25)

Summary

We haven't generated a summary for this paper yet.