Papers
Topics
Authors
Recent
Search
2000 character limit reached

Compound Bi-free Poisson Distributions

Published 4 Jun 2018 in math.OA | (1806.01007v2)

Abstract: In this paper, we study compound bi-free Poisson distributions for {\sl two-faced families of random variables}. We prove a Poisson limit theorem for compound bi-free Poisson distributions. Furthermore, a bi-free infinitely divisible distribution for a two-faced family of self-adjoint random variables can be realized as the limit of a sequence of compound bi-free Poisson distributions of two-faced families of self-adjoint random variables. If a compound bi-free Poisson distribution is determined by a positive number and the distribution of a two faced family of finitely many random variables, which has an almost sure random matrix model, and the left random variables commute with the right random variables in the two-faced family, then we can construct a random bi-matrix model for the compound bi-free Poisson distribution. If a compound bi-free Poisson distribution is determined by a positive number and the distribution of a commutative pair of random variables, we can construct an asymptotic bi-matrix model with entries of creation and annihilation operators for the compound bi-free Poisson distribution.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.