Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automating Personnel Rostering by Learning Constraints Using Tensors (1805.11375v1)

Published 29 May 2018 in cs.AI

Abstract: Many problems in operations research require that constraints be specified in the model. Determining the right constraints is a hard and laborsome task. We propose an approach to automate this process using artificial intelligence and machine learning principles. So far there has been only little work on learning constraints within the operations research community. We focus on personnel rostering and scheduling problems in which there are often past schedules available and show that it is possible to automatically learn constraints from such examples. To realize this, we adapted some techniques from the constraint programming community and we have extended them in order to cope with multidimensional examples. The method uses a tensor representation of the example, which helps in capturing the dimensionality as well as the structure of the example, and applies tensor operations to find the constraints that are satisfied by the example. To evaluate the proposed algorithm, we used constraints from the Nurse Rostering Competition and generated solutions that satisfy these constraints; these solutions were then used as examples to learn constraints. Experiments demonstrate that the proposed algorithm is capable of producing human readable constraints that capture the underlying characteristics of the examples.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Mohit Kumar (53 papers)
  2. Stefano Teso (52 papers)
  3. Luc De Raedt (55 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.