Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Disentangling by Partitioning: A Representation Learning Framework for Multimodal Sensory Data (1805.11264v1)

Published 29 May 2018 in stat.ML, cs.CL, cs.LG, cs.SD, and eess.AS

Abstract: Multimodal sensory data resembles the form of information perceived by humans for learning, and are easy to obtain in large quantities. Compared to unimodal data, synchronization of concepts between modalities in such data provides supervision for disentangling the underlying explanatory factors of each modality. Previous work leveraging multimodal data has mainly focused on retaining only the modality-invariant factors while discarding the rest. In this paper, we present a partitioned variational autoencoder (PVAE) and several training objectives to learn disentangled representations, which encode not only the shared factors, but also modality-dependent ones, into separate latent variables. Specifically, PVAE integrates a variational inference framework and a multimodal generative model that partitions the explanatory factors and conditions only on the relevant subset of them for generation. We evaluate our model on two parallel speech/image datasets, and demonstrate its ability to learn disentangled representations by qualitatively exploring within-modality and cross-modality conditional generation with semantics and styles specified by examples. For quantitative analysis, we evaluate the classification accuracy of automatically discovered semantic units. Our PVAE can achieve over 99% accuracy on both modalities.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Wei-Ning Hsu (76 papers)
  2. James Glass (173 papers)
Citations (41)