Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Convolutional neural network compression for natural language processing (1805.10796v1)

Published 28 May 2018 in cs.CL, cs.LG, and cs.NE

Abstract: Convolutional neural networks are modern models that are very efficient in many classification tasks. They were originally created for image processing purposes. Then some trials were performed to use them in different domains like natural language processing. The artificial intelligence systems (like humanoid robots) are very often based on embedded systems with constraints on memory, power consumption etc. Therefore convolutional neural network because of its memory capacity should be reduced to be mapped to given hardware. In this paper, results are presented of compressing the efficient convolutional neural networks for sentiment analysis. The main steps are quantization and pruning processes. The method responsible for mapping compressed network to FPGA and results of this implementation are presented. The described simulations showed that 5-bit width is enough to have no drop in accuracy from floating point version of the network. Additionally, significant memory footprint reduction was achieved (from 85% up to 93%).

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.