Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Binarized Convolutional Neural Networks for Efficient Inference on GPUs (1808.00209v1)

Published 1 Aug 2018 in cs.LG and stat.ML

Abstract: Convolutional neural networks have recently achieved significant breakthroughs in various image classification tasks. However, they are computationally expensive,which can make their feasible mplementation on embedded and low-power devices difficult. In this paper convolutional neural network binarization is implemented on GPU-based platforms for real-time inference on resource constrained devices. In binarized networks, all weights and intermediate computations between layers are quantized to +1 and -1, allowing multiplications and additions to be replaced with bit-wise operations between 32-bit words. This representation completely eliminates the need for floating point multiplications and additions and decreases both the computational load and the memory footprint compared to a full-precision network implemented in floating point, making it well-suited for resource-constrained environments. We compare the performance of our implementation with an equivalent floating point implementation on one desktop and two embedded GPU platforms. Our implementation achieves a maximum speed up of 7. 4X with only 4.4% loss in accuracy compared to a reference implementation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Mir Khan (1 paper)
  2. Heikki Huttunen (25 papers)
  3. Jani Boutellier (16 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.