Residual entropies for three-dimensional frustrated spin systems with tensor networks
Abstract: We develop a technique for calculating three-dimensional classical partition functions using projected entangled-pair states (PEPS). Our method is based on variational PEPS optimization algorithms for two-dimensional quantum spin systems, and allows us to compute free energies directly in the thermodynamic limit. The main focus of this work is classical frustration in three-dimensional many-body systems leading to an extensive ground-state degeneracy. We provide high-accuracy results for the residual entropy of the dimer model on the cubic lattice, water-ice $I_h$ and water-ice $I_c$. In addition, we show that these systems are in a Coulomb phase by computing the dipolar form of the correlation functions. As a further benchmark of our methods, we calculate the critical temperature and exponents of the Ising model on the cubic lattice.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.