Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
GPT OSS 120B 391 tok/s Pro
Kimi K2 159 tok/s Pro
2000 character limit reached

Unified tensor network theory for frustrated classical spin models in two dimensions (2309.05321v1)

Published 11 Sep 2023 in cond-mat.stat-mech and cond-mat.str-el

Abstract: Frustration is a ubiquitous phenomenon in many-body physics that influences the nature of the system in a profound way with exotic emergent behavior. Despite its long research history, the analytical or numerical investigations on frustrated spin models remain a formidable challenge due to their extensive ground state degeneracy. In this work, we propose a unified tensor network theory to numerically solve the frustrated classical spin models on various two-dimensional (2D) lattice geometry with high efficiency. We show that the appropriate encoding of emergent degrees of freedom in each local tensor is of crucial importance in the construction of the infinite tensor network representation of the partition function. The frustrations are thus relieved through the effective interactions between emergent local degrees of freedom. Then the partition function is written as a product of a one-dimensional (1D) transfer operator, whose eigen-equation can be solved by the standard algorithm of matrix product states rigorously, and various phase transitions can be accurately determined from the singularities of the entanglement entropy of the 1D quantum correspondence. We demonstrated the power of our unified theory by numerically solving 2D fully frustrated XY spin models on the kagome, square and triangular lattices, giving rise to a variety of thermal phase transitions from infinite-order Brezinskii-Kosterlitz-Thouless transitions, second-order transitions, to first-order phase transitions. Our approach holds the potential application to other types of frustrated classical systems like Heisenberg spin antiferromagnets.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.