Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The Reconstruction Approach: From Interpolation to Regression (1805.10122v3)

Published 25 May 2018 in stat.ML, cs.LG, and stat.ME

Abstract: This paper introduces an interpolation-based method, called the reconstruction approach, for nonparametric regression. Based on the fact that interpolation usually has negligible errors compared to statistical estimation, the reconstruction approach uses an interpolator to parameterize the regression function with its values at finite knots, and then estimates these values by (regularized) least squares. Some popular methods including kernel ridge regression can be viewed as its special cases. It is shown that, the reconstruction idea not only provides different angles to look into existing methods, but also produces new effective experimental design and estimation methods for nonparametric models. In particular, for some methods of complexity O(n3), where n is the sample size, this approach provides effective surrogates with much less computational burden. This point makes it very suitable for large datasets.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.