Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Effectiveness of Richardson Extrapolation in Machine Learning (2002.02835v3)

Published 7 Feb 2020 in cs.LG, cs.NA, math.NA, and math.OC

Abstract: Richardson extrapolation is a classical technique from numerical analysis that can improve the approximation error of an estimation method by combining linearly several estimates obtained from different values of one of its hyperparameters, without the need to know in details the inner structure of the original estimation method. The main goal of this paper is to study when Richardson extrapolation can be used within machine learning, beyond the existing applications to step-size adaptations in stochastic gradient descent. We identify two situations where Richardson interpolation can be useful: (1) when the hyperparameter is the number of iterations of an existing iterative optimization algorithm, with applications to averaged gradient descent and Frank-Wolfe algorithms (where we obtain asymptotically rates of $O(1/k2)$ on polytopes, where $k$ is the number of iterations), and (2) when it is a regularization parameter, with applications to Nesterov smoothing techniques for minimizing non-smooth functions (where we obtain asymptotically rates close to $O(1/k2)$ for non-smooth functions), and ridge regression. In all these cases, we show that extrapolation techniques come with no significant loss in performance, but with sometimes strong gains, and we provide theoretical justifications based on asymptotic developments for such gains, as well as empirical illustrations on classical problems from machine learning.

Citations (9)

Summary

We haven't generated a summary for this paper yet.