Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inferring Human Traits From Facebook Statuses (1805.08718v2)

Published 22 May 2018 in cs.SI

Abstract: This paper explores the use of LLMs to predict 20 human traits from users' Facebook status updates. The data was collected by the myPersonality project, and includes user statuses along with their personality, gender, political identification, religion, race, satisfaction with life, IQ, self-disclosure, fair-mindedness, and belief in astrology. A single interpretable model meets state of the art results for well-studied tasks such as predicting gender and personality; and sets the standard on other traits such as IQ, sensational interests, political identity, and satisfaction with life. Additionally, highly weighted words are published for each trait. These lists are valuable for creating hypotheses about human behavior, as well as for understanding what information a model is extracting. Using performance and extracted features we analyze models built on social media. The real world problems we explore include gendered classification bias and Cambridge Analytica's use of psychographic models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Andrew Cutler (2 papers)
  2. Brian Kulis (33 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.